Worksheet 9

Name:

Name: \qquad

Name: \qquad

Name: \qquad

NetID:

NetID:

NetID:

NetID:

Work in groups of at least 2 and at most 4.

Consider the two algorithms which take in a matrix \mathbf{A} and a vector \mathbf{b}, and output an approximation to the largest magnitude eigenvector:

$$
\begin{aligned}
& \mathbf{y} \leftarrow \mathbf{b} \\
& \text { for } i=1,2, \ldots, k: \\
& \quad \mathbf{y} \leftarrow \mathbf{A y} \\
& \mathbf{y} \leftarrow \mathbf{y} /\|\mathbf{y}\| \text { return } \mathbf{y}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y} \leftarrow \mathbf{b} \\
& \text { for } i=1,2, \ldots, k: \\
& \quad \mathbf{y} \leftarrow \mathbf{A} \mathbf{y} \\
& \mathbf{y} \leftarrow \mathbf{y} /\|\mathbf{y}\| \\
& \text { return } \mathbf{y}
\end{aligned}
$$

How do the outputs compare?

Suppose \mathbf{A} has eigenvalue decomposition:

$$
\mathbf{A}=\mathbf{V}\left[\begin{array}{cccc}
-4 & & & \\
& -1 & & \\
& & 2 & \\
& & & 3
\end{array}\right] \mathbf{V}^{-1}, \quad \mathbf{V}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} \\
\mid & \mid & \mid & \mid
\end{array}\right], \quad \mathbf{x}=\mathbf{V}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

1. Write the eigendecomposition of $\mathbf{A}+c \mathbf{I}$
2. Write the eigendecomposition of $(\mathbf{A}+c \mathbf{I})^{-1}$
3. Suppose $c=2.2$. What are the eigenvalues of $(\mathbf{A}+c \mathbf{I})^{-1}$?
4. For this value of c, what happens if we apply power method with $(\mathbf{A}+c \mathbf{I})^{-1}$?
