Worksheet 5	Numerical Analysis Spring 2023
Name:	NetID:

Work in groups of at least 2 and at most 4.

Problem 1. Suppose

What is $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}}$?

For i = 1, 2, 3, let \mathbf{u}_i be the *i*-th column of **U** and $\mathbf{v}_i^{\mathsf{T}}$ be the *i*-th row of **v**. Compute $\mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$.

Compute $\sum_{i=1}^{3} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}$, where σ_{i} are the diagonal entries of $\boldsymbol{\Sigma}$.

Use this to find a 4×3 matrix $\tilde{\mathbf{U}}$, a 3×3 diagonal matrix $\tilde{\mathbf{\Sigma}}$ and a 3×3 matrix $\tilde{\mathbf{V}}^{\mathsf{T}}$ such that $\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \tilde{\mathbf{U}}\tilde{\mathbf{\Sigma}}\tilde{\mathbf{V}}^{\mathsf{T}}$