Name:

Name: \qquad
Name: \qquad
Name: \qquad

NetID: \square

NetID: \square
NetID:

Work in groups of at least 2 and at most 4.

1. Write the general form of a polynomial which has zeros at $-1,-1 / 2,0,1$ but no other points.
2. Find the polynomial which has zeros at $-1,-1 / 2,0,1$ and is equal to one at $1 / 2$.
3. Find the polynomial which has zeros at $-1 / 2,0,1$ and is equal to one at -1 .
4. Plot each the previous two polynomials, their sum, and twice the polynomial from 2 minus the polynomial from 3 .

5. Fix distinct values $x_{1}, x_{2}, \ldots, x_{k}$. Let j be some integer between 1 and k. Write the formula for the polynomial which is one at x_{j} and zero at the rest of the x_{i}.
6. For each j, call the polynomial in the previous problem $\ell_{j}(x)$. Write down the formula for the degree $k-1$ polynomial which passes through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)$.
