
Create Rubric

15 points

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

1 of 6 6/6/23, 15:00

 Create your rubric now or come back to it later. You can also make edits to your rubric while grading.

Q1 Problem 1

10 points

This quiz is open-notes and you are

permitted to use software like python,

Wolfram Alpha, desmost, etc. You are not

allowed to search for the solution, to use

stackexchange, Chegg, etc.

Consider the following code for obtaining an

approximation to the function

:

n = 100

k = 5

x = np.linspace(-1,1,n)

y = 1/(1+16*x**2)

A = np.zeros((n,k+1))

for i in range(k+1):

 A[:,i] = np.cos(i*np.pi*x)

c = np.linalg.lstsq(A,y)[0]

Q1.1 (a)

1 point

Describe in words the columns of A

f(x) =

1/(1 + 16x)2

1 +1.0

credit

2 +1.0

should be explicit that x is vector not sca

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

2 of 6 6/6/23, 15:00

Q1.2

4 points

Describe in words what the code is doing.

3 +0.0

no credit

 Add Rubric Item

1 -0.0

Correct

2 -1.0

not polynomial

3 -0.5

not linear system / not interpolating

4 -1.0

too vague

5 -3.0

not 5 points

6 -3.0

not chebyshev nodes or functions

 Add Rubric Item

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

3 of 6 6/6/23, 15:00

Q1.3

3 points

Describe how to obtain an approximation to

the function from the

output of the code.

Q1.4

2 points

f(x) = 1/(1 + 16x)2

1 +3.0

Correct

2 +1.5

using the x for the fit only gives approxi

equally spaced points

3 +3.0

this stil gives a discrete approximation, b

4 +1.5

not chebyshev polynomials

5 +2.0

c0 not divided by 2

6 +0.0

does not explain how to get this from th

 Add Rubric Item

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

4 of 6 6/6/23, 15:00

Will this approach work for approximating

? Why or why not?

Q2 Problem 2

5 points

The -th entry of t1 and t2 are the flop

counts from two different algorithms run on

an input of size .

t1 = np.array([4, 7, 16, 37, 76, 139, 232, 361, 532,

751, 1024, 1357, 1756, 2227, 2776, 3409, 4132, 4951,

5872, 6901, 8044, 9307, 10696, 12217, 13876, 15679, 17632,

19741, 22012, 24451])

t2 = np.array([0, 97, 394, 891, 1588, 2485, 3582, 4879, 6376,

8073, 9970, 12067, 14364, 16861, 19558, 22455, 25552, 28849,

32346, 36043, 39940, 44037, 48334, 52831, 57528, 62425, 67522,

72819, 78316, 84013])

f(x) = np.exp(−x)

1 +2.0

Correct

2 +2.0

function on [-1,1] can be approximated w

(although not with cosines because they

problem didn't explicitly specify the app

on [-1,1], so full credit

3 +1.0

insufficient justifucation

4 +0.0

Incorrect

 Add Rubric Item

n

n

1 -0.0

correct

2 -0.0

full credit - overly complicated answer

3 -0.0

how do you know the flops grow faster?

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

5 of 6 6/6/23, 15:00

One of the algorithms requires flops

and the other requires flops.

Determine which is which and explain your

solution:

O(n)2

O(n)3

4 -1.0

correct answer, but incomplete logic; e.g

5 -3.0

incorrect

 Add Rubric Item

Create Rubric | Gradescope https://www.gradescope.com/courses/487363/assignme...

6 of 6 6/6/23, 15:00

