\square
\square

Quiz 2

Numerical Analysis Spring 2023

Name: \qquad NetID: \square

Problem 1. Let \mathbb{F} denote some discrete set of numbers, and suppose that for some $\epsilon>0$ the function $\mathrm{rd}: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
|x-\operatorname{rd}(x)|<\epsilon|x|, \quad \forall x \in \mathbb{R} .
$$

Find the largest value of ϵ for which we can guarantee $\operatorname{rd}\left(10^{5}+1\right) \neq 10^{5}$.
\square
For this value of ϵ, can we guarantee $\operatorname{rd}\left(10^{-6}-10^{-10}\right) \neq 10^{-6}$? Answer yes or no, no justification needed.

Problem 2. Consider the following problem/task: You are given a differentiable function $h:[-1,1] \rightarrow \mathbb{R}$ and must return $h^{\prime}(0)$.

Example inputs/outputs:

input	solution
$h(s)=1$	0
$h(s)=s^{2}+2 s$	2
$h(s)=\sin (s)$	1

Define two inputs h and \tilde{h} as near if $d(h, \tilde{h}):=\max _{s \in[-1,1]}|h(s)-\tilde{h}(s)|$ is small.
Give a reasonable mathematical definition for the condition number of this problem at an input h.
\square
Decide whether this problem is well-conditioned or not. If it is, explain why. If it is not, provide an example showing that it is not (with justification).
(7pts)

