Quiz 2	Nume	rical Analysis Spring	2023		
Name:		NetID:			
Problem 1. Let \mathbb{F} denote some discrete set of numbers, and suppose that for some $\epsilon > 0$ the function $\mathrm{rd} : \mathbb{R} \to \mathbb{F}$ satisfies					
	$ x-\operatorname{rd}(x) <\epsilon x ,$	$\forall x \in \mathbb{R}.$			
Find the largest value of a	e for which we can gu	arantee $rd(10^5 + 1) \neq 10^5$.	(4pts)		
For this value of ϵ , can we justification needed.	e guarantee rd(10 ^{–6} –	$(-10^{-10}) \neq 10^{-6}$? Answer yes	or no, no (lpts)		

Problem 2. Consider the following problem/task: You are given a differentiable function $h: [-1,1] \to \mathbb{R}$ and must return h'(0).

Example inputs/outputs:

input	solution		
h(s) = 1	0		
$h(s) = s^2 + 2s$	2		
$h(s) = \sin(s)$	1		

Define two inputs h and \tilde{h} as near if $d(h, \tilde{h}) := \max_{s \in [-1, 1]} |h(s) - \tilde{h}(s)|$ is small.

Give a reasonable mathematical definition for the condition number of this problem at an input h. (3pts)

Decide whether this problem is well-conditioned or not. If it is, explain why. If it is not, provide an example showing that it is not (with justification). (7pts)