Instructions:

- Due 05/04 at 11:59pm on Gradescope.
- Write the names of anyone you work with on the top of your assignment. If you worked alone, write that you worked alone.
- Show your work.
- Include all code you use as copyable monospaced text in the PDF (i.e. not as a screenshot).
- Do not put the solutions to multiple problems on the same page.
- Tag your responses on gradescope. Each page should have a single problem tag. Improperly tagged responses will not receive credit.

Problem 1. Let $f(x)=|x|$ and define $p_{k}(x)$ as the degree k polynomial interpolate to $f(x)$ at the $k+1$ Chebyshev nodes.
(a) For $k=10$ make one plot with x vs $f(x)$ and x vs $p_{k}(x)$ and one plot over x vs $\left|f(x)-p_{k}(x)\right|$ with the vertical axis on a log-scale.
(b) Repeat this for $k=40$

Problem 2. (a) Prove that on a log-log plot, x vs x^{k} is a line. What is the slope?
(b) What will the plot of x vs $5 x^{2}+3 x+1$ look like on a log-log plot when x is large?
(c) Prove that on a log-y plot, x vs ρ^{x} is a line. What is the slope?

Problem 3. (a) Let $f(x)=\exp (-x)$ and define $p_{k}(x)$ as the degree k polynomial interpolate to $f(x)$ at the $k+1$ Chebyshev nodes.
Make a plot of k vs

$$
\max _{x \in[-1,1]}\left|f(x)-p_{k}(x)\right|
$$

for $k=0,1,2, \ldots 20$. Put the y-axis on a log scale and label the axes/plot/etc.
To approximate

$$
\max _{x \in[-1,1]}\left|f(x)-p_{k}(x)\right|
$$

you can instead take the maximum over 1000 equally spaced points in $[-1,1]$ and use this instead.
(b) Repeat this for $f(x)=1 /\left(1+16 x^{2}\right)$ and $k=0,1, \ldots, 100$.
(c) Repeat this for $f(x)=|\sin (5 x)|^{3}=\left(\sin (5 x)^{2}\right)^{3 / 2}$ and $k=0,1, \ldots, 100$, but put both axes on log-scales.
Add a line k vs k^{-v}, where v is the largest value so that the $(v-1)$-st derivative of $f(x)$ is continuous.

Problem 4. Let $f(x)=1 /\left(1+16 x^{2}\right)$.
For any non-negative integer k, set $n=k^{2}+1$ and let x_{1}, \ldots, x_{n} be n equally spaced points from -1 to 1 and let $q_{k}(x)$ be the degree k polynomial minimizing

$$
\min _{\operatorname{deg}(q)=k} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-q\left(x_{i}\right)\right)^{2} .
$$

On a log-y plot, plot the error

$$
\max _{x \in[-1,1]}\left|f(x)-q_{k}(x)\right|
$$

for $k=0,1, \ldots, 100$. Add to this plot the error of the Chebyshev interpolant that you computed in 3(b).

