
Homework 4 Numerical Analysis Spring 2023

Instructions:

• Due 04/06 at 11:59pm onGradescope.

• Write the names of anyone you work with on the top of your assignment. If

youworked alone,write that youworked alone.

• Showyourwork.

• Include all code you use as copyable monospaced text in the PDF (i.e. not as a
screenshot).

• Do not put the solutions tomultiple problems on the same page.

• Tagyour responses on gradescope. Each page should have a single problem tag.

Improperly tagged responseswill not receive credit.

Problem 1. Download the numpy data file from this link: https://drive.google.
com/file/d/1Ao0HQDnaGlYirr8pak6TRUd8IItqTy9U/view?usp=share_link

Use the following code to import the file into numpy.

import numpy as np
import matplotlib.pyplot as plt

im = np.load('change this path/tandon.npy ')
A = np.mean(im,axis=2)

Herewe obtain𝐀 by averaging the red, green, and blue channels of the image. This

result sin a black andwhite image.

(a) Plot the imageusingplt.imshow. Youmaywant touse thecolormap'Greys_r'
so that it looks like a greyscale image.

(b) Compute the reduced SVD of 𝐀. You can use full_matrices=False to get the
reduced SVD. Thiswill bemuch faster than computing the full SVD.

For each 𝑘 = 1, 10, 100, 200, make a plot of the best rank-𝑘 approximation
𝐀𝑘 to 𝐀 (i.e. via truncated SVD). Label each plot with the rank 𝑘 as well as the
relative error ‖𝐀 − 𝐀𝑘‖F/‖𝐀‖F

(c) Remark on the quality of the plots.

Howmanyfloating point numbers are required to store𝐀? Howmany are re-
quired to store the rank-𝑘 truncated SVD?

1

https://www.gradescope.com/courses/487363/
https://drive.google.com/file/d/1Ao0HQDnaGlYirr8pak6TRUd8IItqTy9U/view?usp=share_link
https://drive.google.com/file/d/1Ao0HQDnaGlYirr8pak6TRUd8IItqTy9U/view?usp=share_link

Problem 2. Computing the SVD is expensive, but randomization can help us!

(a) Randomized numerical linear algebra (RandNLA) is the study of the use of

randomness in numerical linear algebra algorithms. One of the most famous

randNLAalgorithms is the randomizedSVD.Asimpleversion forapproximat-

ing the SVD of a𝑚 × 𝑛matrix𝐀 can be described in several lines:

• Choose a 𝑛 × 𝑘matrix𝐑with standard normal random entries

• Compute𝐗 = 𝐀𝐑
• Compute𝐐, _ = QR(𝐗)
• Compute SVD of 𝐐T𝐀: �̂��̂��̂�T

• Return approximate SVD of 𝐀: (𝐐�̂�)�̂��̂�T

Implement this algorithm and time it for 𝑘 = 100with the same matrix 𝐀 as

in problem 1. To generate the randommatrix, you can use np.random.randn(n
,k).

Again make sure to use full_matrices=False when computing the SVD of

𝐐T𝐀. Compare this to long the whole randomized SVD took (all of the steps)
against the time to compute the exact SVD in the previous problem.

(b) Make a plot of the rank 𝑘 = 100 truncated SVD (from problem 1) and the 𝑘 =
100 randomized SVD. Show the relative errors ‖𝐀 − (𝐐�̂�)�̂��̂�T‖F/‖𝐀‖F for each.

(c) Prove that𝐐�̂� has orthonormal columns.

Problem 3. (a) Suppose 𝐯 is an eigenvector of 𝐀with eigenvalue 𝜆. Show 𝑐𝐯 is an
eigenvector of 𝐀. What is the eigenvalue?

(b) Suppose𝐗 is a 𝑛×𝑚matrix. Write ‖𝐗‖F in terms of the column-norms ‖[𝐗]∶,𝑖‖2.

(c) Suppose𝐗 is a 𝑛 × 𝑚matrix and𝐔 is a 𝑛 × 𝑛 orthogonalmatrix (𝐔T𝐔 = 𝐈). Show
that ‖𝐔𝐗‖F = ‖𝐗‖F. Hint: use (b) and show that ‖𝐔𝐱‖2 = ‖𝐱‖2 for anyvector 𝐱.

Problem 4. This problem will illustrate that solving the normal equations is less

stable than other approaches.

(a) For each 𝜅 = 101, 102, 103 … , 108, construct a 500 × 100matrix𝐀whose con-

dition number is 𝜅. A simple way to do this is to generate 𝐔 and 𝐕 as random

orthogonal matrices of size 𝑚 × 𝑛 and 𝑛 × 𝑛 and define 𝚺 as a 𝑛 × 𝑛 diagonal
matrix manually.

The following code gets you started, you just need to modify the line for the

singular values s =

m,n = 500,100
U,_ = np.linalg.qr(np.random.randn(m,n))
V,_ = np.linalg.qr(np.random.randn(n,n))
s = #TODO

A = U@np.diag(s)@V.T

2

Let𝐛be the all onesvector, and compute the “true” solution to the least squares
problemmin𝐱 ‖𝐛 − 𝐀𝐱‖2 by setting 𝐱true = 𝐕𝚺−1𝐔T𝐛. This can be donewith the
following code:

b = np.ones(m)
x_true = V@np.diag(1/s)@U.T@b

Now, compute the least squares solution via:

• numpy’s least squares solver np.linalg.lstsq
• a QR based approachwith numpy’s np.linalg.qr and np.linalg.solve
or sp.linalg.solve_triangular

• Solving the normal equationswith np.linalg.solve
For each of these three methods and each value of 𝜅, record the relative error
‖𝐱method − 𝐱true‖2/‖𝐱true‖2, where 𝐱method is the solution obtained by the given
method.

(b) Make a log-log plotwith the following five (labeled) curves:

• 𝜅 vs 10−16𝜅
• 𝜅 vs 10−16𝜅2

• 𝜅 vs relative error (for each of the threemethods above)
Comment onwhatyou observe about the plots. In particular, discuss howeach

method depends on 𝜅 and what the relative errors would be if we did every-
thing in exact arithmetic

3

