
Homework 4 Numerical Analysis Spring 2023

Instructions:

• Due 03/16 at 11:59pm onGradescope.

• Write the names of anyone you work with on the top of your assignment. If

youworked alone,write that youworked alone.

• Showyourwork.

• Include all code you use as copyable monospaced text in the PDF (i.e. not as a
screenshot).

• Do not put the solutions tomultiple problems on the same page.

• Tagyour responses on gradescope. Each page should have a single problem tag.

Improperly tagged responseswill not receive credit.

Problem 1. (a) Let 𝑥1, … , 𝑥𝑛 be uniformly space points from −1 to 1. You can gen-
erate this in code by x = np.linspace(-1,1,n).

For 𝑛 = 100, construct thematrix

𝐀 =
⎡
⎢
⎢
⎢
⎣

(𝑥1)0 (𝑥1)1 ⋯ (𝑥1)4

(𝑥2)0 (𝑥2)1 ⋯ (𝑥2)4

⋮ ⋮ ⋮
(𝑥𝑛)0 (𝑥𝑛)1 ⋯ (𝑥𝑛)4

⎤
⎥
⎥
⎥
⎦

(b) Plot each columnof 𝐀 against𝐱 = [𝑥1, … , 𝑥𝑛]ona single plot. Label each curve.
If your matrix 𝐀 is a stored as a python array A, you can plot the 𝑖-th column
using plt.plot(x,A[:,i]).

(c) Apply a QR factorization to 𝐀 to obtain 𝐐𝐑. You are allowed to use numpy’s
algorithm or the ones from the lecture.

On a separate plot from (b), plot each of the columns of 𝐐.
(d) Explain howeach column of 𝐐 relates to 𝐱. In particular,write down the poly-

nomials 𝑝0(𝑥), 𝑝1(𝑥), …, 𝑝4(𝑥) such that

𝐐 =
⎡
⎢⎢⎢
⎣

𝑝0(𝑥1) 𝑝1(𝑥1) ⋯ 𝑝4(𝑥1)
𝑝0(𝑥2) 𝑝1(𝑥2) ⋯ 𝑝4(𝑥2)

⋮ ⋮ ⋮
𝑝0(𝑥𝑛) 𝑝1(𝑥𝑛) ⋯ 𝑝4(𝑥𝑛)

⎤
⎥⎥⎥
⎦

.

(e) Change 𝑛 from 100 to 1000. What do you notice about the columns of 𝐐; in
particular, about the polynomials 𝑝0, 𝑝2, …, 𝑝4?

Whatwould happen as 𝑛 → ∞?

1

https://www.gradescope.com/courses/487363/


Problem 2. Let

𝐀 =
⎡
⎢⎢⎢⎢
⎣

1
2 −1

2
1
2

1
2

9
2 −1

2
−1

2
1
2

3
2

−1
2 −9

2
5
2

⎤
⎥⎥⎥⎥
⎦

(a) By hand, compute the QR factorization of 𝐀 using the regular Gram-Schmidt

algorithm. Showyourwork at each step.

(b) Byhand, compute theQRfactorizationof 𝐀using themodifiedGram-Schmidt

algorithm. Showyourwork at each step.

Problem 3. Recall the regular Gram–Schmidt projection of 𝐚 onto the orthogonal
compliment of the columns 𝐮1, … , 𝐮𝑗 of 𝐔 is

proj𝐔⟂(𝐚) = 𝐚 − 𝐮1(𝐮T
1𝐚) − … − 𝐮𝑗(𝐮T

𝑗 𝐚).

(a) Write this in terms of matrix-vector productswith𝐔.
(b) Matrix products are associative, so the order you multiply things above does

not impact the solution. However, number of flops does depend on the order.

Describe the more efficient ordering, and give the number of floating point

operations required.

(c) Implement a newversion of proj_perp_GS(U,a) using (b).
(d) Compare the original proj_perp_GS, the modified proj_perp_MGS and your

new implementation.

In particular, let us generate an arbitrary orthogonal matrix𝐔 and vector 𝐚.
n = 2000
U,_ = np.linalg.qr(np.random.randn(n,500))
a = np.random.randn(n)

ks = [1,50,100,150,200,250,300,350,400,450,500]

For each of the 𝑘 values above, time how long it takes to compute the orthog-
onal projection of 𝐚 onto the first 𝑘 columns of 𝐔. The matrix with the first 𝑘
columns of 𝐔 is U[:,:k].

Plot all the timings on the same plot, labeling each curve and the axes.

Note that because of noise, itwill help to average together several runs for each

value of 𝑘.
Optionally, you can repeat this andmake newplots for different values of 𝑛.

(e) What do you observe? How can you explain this, given that all of the algo-

rithms use rough the same number of floating point operations?

2


