Instructions:

- Due 12/18 at 6:00pm on [Gradescope.](https://www.gradescope.com/courses/818054)
- You must follow the submission policy in the [syllabus](https://courses.chen.pw/na_f2024/syllabus.html)
- This homework is optional. If you submit it I will compute your homework grade from the all 7 homeworks. If you do not submit it, I will compute your homework grade from the homeworks 1-6.

Problem 1. Suppose **A** has SVD $A = U\Sigma V^{\mathsf{T}}$ where

$$
\mathbf{U} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\ | & | & \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix}, \qquad \mathbf{V} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & \cdots & \cdots \end{bmatrix}.
$$

- (a) Show that \mathbf{v}_i is an eigenvector of $\mathbf{A}^\mathsf{T}\mathbf{A}.$ What is the corresponding eigenvalue?
- (b) Define the block matrix:

$$
\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}.
$$

Show that

$$
\mathbf{x} = \begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix}
$$

is an eigenvector of **B**. What is the corresponding eigenvalue?

Problem 2. Suppose $\lambda_1 > \lambda_2 > \lambda_3 \geq \cdots \geq \lambda_n \geq 0$ and let

$$
\mathbf{A} = \mathbf{V} \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix} \mathbf{V}^{-1}, \qquad \mathbf{x} = \mathbf{V} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix}.
$$

- (a) Find a vector **z** so that $A^k x = Vz$.
- (b) What vector does $\mathbf{z}/\|\mathbf{z}\|$ converge to as $k \to \infty$?
- (c) What vector does $\mathbf{A}^k\mathbf{x}/\|\mathbf{A}^k\mathbf{x}\|$ converge to as $k\to\infty$?

(d) What if instead
$$
\mathbf{x} = \mathbf{V} \begin{bmatrix} 10^{-100} \\ 1 \\ \vdots \\ 1 \end{bmatrix}
$$
?

Problem 3. (a) Let $f(x) = \exp(-x)$ and define $p_k(x)$ as the degree k polynomial interpolate to $f(x)$ at the $k + 1$ Chebyshev nodes.

Make a plot of k vs

$$
\max_{x \in [-1,1]} |f(x) - p_k(x)|
$$

for $k = 0, 1, 2, ...$ 20. Put the y-axis on a log scale and label the axes/plot/etc.

To approximate

$$
\max_{x \in [-1,1]} |f(x) - p_k(x)|
$$

you can instead take the maximum over 1000 equally spaced points in $[-1, 1]$ and use this instead.

- (b) Repeat this for $f(x) = 1/(1 + 16x^2)$ and $k = 0, 1, ..., 100$.
- (c) Repeat this for $f(x) = |\sin(5x)|^3 = (\sin(5x)^2)^{3/2}$ and $k = 0, 1, ..., 100$, but put both axes on log-scales.

Add a line k vs $k^{-\nu}$, where ν is the largest value so that the $(\nu - 1)$ -st derivative of $f(x)$ is continuous.

Problem 4. On $[-1, 1]$, the *j*-th Chebyshev polynomial is defined as

$$
T_j(x) := \cos(j \cos^{-1}(x)).
$$

Remarkably this is actually a polynomial of degree j .

- (a) For $j = 0, 1, 2, 3, 4, 5$ plots $T_j(x)$ on $[-1, 1]$.
- (b) What are the zeros of $T_k(x)$ in terms of k ?
- (c) Denote by $x_1, ..., x_k$ the zeros of $T_k(x)$. For $k = 10$ form the Vandermonde-like matrix

$$
\mathbf{A} = \begin{bmatrix} T_0(x_1) & T_1(x_1) & \cdots & T_{k-1}(x_1) \\ T_0(x_2) & T_1(x_2) & \cdots & T_{k-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ T_0(x_k) & T_1(x_k) & \cdots & T_{k-1}(x_k) \end{bmatrix}.
$$

Look at A^TA . What do you notice?

What is the condition number of A ?

(d) How might this be relevant to polynomial interpolation?

Problem 5. Let $f(x) = 1/(1 + 16x^2)$.

For any non-negative integer k, set $n = k^2 + 1$ and let $x_1, ..., x_n$ be n equally spaced points from –1 to 1 and let $q_k(x)$ be the degree k polynomial minimizing

$$
\min_{\deg(q)=k} \sum_{i=1}^n (f(x_i) - q(x_i))^2.
$$

On a log-y plot, plot the error

$$
\max_{x \in [-1,1]} |f(x) - q_k(x)|
$$

for $k = 0, 1, ..., 100$. Add to this plot the error of the Chebyshev interpolant that you computed in 3(b).