
Homework 6 Numerical Analysis Fall 2024

Instructions:

• Due 11/25 at 6:00pm onGradescope.

• Youmust follow the submission policy in the syllabus

Problem1. Supposewehave time-series data (𝑡1, 𝑦1), … , (𝑡𝑛, 𝑦𝑛). We can try to fit the
datawith a polynomial of degree 𝑘. I.e. find a polynomial

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑘𝑥𝑘

so that at each time 𝑡𝑖, we have

𝑝(𝑡𝑖) ≈ 𝑦𝑖.

To do this, we can solve a least squares problem

min𝑐0,…,𝑐𝑘

𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑝(𝑡𝑖))2 = min𝑐0,…,𝑐𝑘

𝑛

∑
𝑖=1

(𝑦𝑖 − (𝑐0 + 𝑐1𝑡𝑖 + ⋅ + 𝑐𝑘𝑡𝑘
𝑖 ))2.

Aswe saw in class, this can bewritten as a linear algebra problem:

min
𝐜∈ℝ𝑘+1

‖𝐛 − 𝐀𝐱‖2
2

where

𝐛 =
⎡
⎢⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥⎥
⎦

, 𝐀 =
⎡
⎢
⎢
⎢
⎣

1 𝑡1 𝑡2
1 ⋯ 𝑡𝑘

1
1 𝑡2 𝑡2

2 ⋯ 𝑡𝑘
2

⋮ ⋮ ⋮
1 𝑡𝑛 𝑡2

𝑛 ⋯ 𝑡𝑘
𝑛

⎤
⎥
⎥
⎥
⎦

.

Get the data temp.npy from thewebsite. Load the data:

temp = np.load('gdrive/MyDrive/na_f2024/hw files/temp.npy ')
t = np.arange(190)/24 # time in days

We can plot the data:

plt.subplots(1,1,figsize=(12,4))
plt.plot(t,temp ,marker='.',ls='None ',label='data ')
plt.ylabel('temperature (F)')
plt.xlabel('time since Oct 29 (days)')
plt.legend()
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(a) Foreach𝑘 = 5, 10, 15, 20, 25, setup the least squaresproblemforandandsolve

it (either using np.linalg.lstsq or using a QR factorization followed bya tri-
angular solve).

Add each of the polynomials (evaluated at a finer grid of 𝑡 values) to the plot.
Make sure they are labeled.

(b) Note that we could represent our polynomial in terms of a different basis. I.e.

instead of 1, 𝑥, 𝑥2, … , 𝑥𝑘, we could use any family 𝑝0(𝑥), 𝑝1(𝑥), … , 𝑝𝑘(𝑥), where
𝑝𝑖(𝑥) has degree 𝑖.
One common choice is the Chebyshev polynomials. On [−1, 1], these are de-
fined by

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑗+1(𝑥) = 2𝑥𝑇𝑗(𝑥) − 𝑇𝑗−1(𝑥).

More generally, we can define them on an interval [𝑎, 𝑏] by

𝑝𝑖(𝑥) = 𝑇𝑖 (2𝑥 − (𝑎 + 𝑏)
𝑏 − 𝑎 ) .

Repeat the above process with the scaled Chebyshev polynomials (here 𝑎 = 0
and 𝑏 = 8); i.e. using

𝐀 =
⎡
⎢⎢⎢
⎣

𝑝0(𝑡1) 𝑝1(𝑡1) ⋯ 𝑝𝑘(𝑡1)
𝑇0(𝑡2) 𝑝1(𝑡2) ⋯ 𝑝𝑘(𝑡2)

⋮ ⋮ ⋮
𝑝0(𝑡𝑛) 𝑝1(𝑡𝑛) ⋯ 𝑝𝑘(𝑡𝑛)

⎤
⎥⎥⎥
⎦

.

Wecanmake a function to evaluate theChebyshevpolynomials on [𝑎, 𝑏] as fol-
lows: 1

def chebyshev_polynomail(j,x,a,b):
return np.cos(j*np.arccos((2*x-(a+b))/(b-a)))

If wewant to evaluate this for 𝑗 = 3 at all the 𝑡 valueswe can do:

chebyshev_polynomail(3,t,0,8)

Make a plotwith 𝑘 = 5, 10, 15, 20, 25.
(c) Explainwhytheplots should look the same if wewere doing th e computations

exactly.

(d) Lookat theconditionnumbersof all of thematricesyouuse in the least squares

problems. Howdoes this explainwhythe plotswith different polynomial fam-

ilies look different?

1It’s not obvious how to get this formula, but you could prove it satisfies the recurrence formula!
You can look at thewikipedia page for more info
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Problem 2. Suppose𝐀 is symmetricwith eigenvalues 𝜆1, … , 𝜆𝑛 (so that |𝜆1| > |𝜆2| ≥
⋯ ≥ |𝜆𝑛|) and corresponding orthonormal eigenvectors 𝐯1, … , 𝐯𝑛.

Our analysis of the power-method involvedwriting the starting vector 𝐱 in terms of
𝐕; i.e. writing

𝐱 = 𝐕
⎡
⎢⎢⎢
⎣

𝑐1
𝑐2
⋮
𝑐𝑛

⎤
⎥⎥⎥
⎦

.

As long as |𝑐1| > 0, thenwe got convergence to 𝐯1.

Of course, in practice we don’t know the eigenvectors or the 𝑐𝑖s. However, it turns

out if we choose 𝐱 randomly, then 𝑐1will never be zero (and in factwill never be that

small).

(a) Supposewe have 𝐱 and𝐕. Howwe compute 𝑐1?

(b) Make any 5 × 5 symmetric matrix 𝐀 sample a length 5 vector 𝐱whose entries
are independent Gaussians. You can do this by using np.random.randn(5).

(c) Use numpy’s np.linalg.eigh to compute its eigendecompsition. Use (a) to
compute 𝑐1 and report it’s value.

(d) Repeat (b) 1000 times with a new 𝐱 each time. Make a histogram of the value

of 𝑐1 over these trials.
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Was 𝑐1 ever zero?

(e) In the aboveprocess,weneeded to compute𝐕 in order tofind 𝑐1. But thiswould

be expensive for largematrices.

Explainwhywe do not need to compute𝐕 in practice in order to use the power
method to find 𝐯1.

Problem 3. Suppose 𝐀 is symmetric with eigenvalue decomposition 𝐕𝚲𝐕T, where

𝚲 is diagonalwith entries 𝜆1, … , 𝜆𝑛.

(a) Find the eigenvalue decomposition of:

• 𝐀𝑘

• 𝐀3 − 2𝐀
• 𝐀−1

• (𝐀 + 𝜆)−1

(b) What is the largest eigenvalue of (𝐀 + 𝜆)−1 in terms of the 𝜆𝑖s?

2It turns out the distribution of 𝑐1 does not depend on how you generated the matrix 𝐀! This is
because of something called the orthogonal invariance of the Gaussian distribution.
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Problem 4. Suppose𝐀 is symmetric with eigenvalues 𝜆1, … , 𝜆𝑛 (so that |𝜆1| > |𝜆2| >
|𝜆3| > ⋯ > |𝜆𝑛|) and corresponding orthonormal eigenvectors 𝐯1, … , 𝐯𝑛.

Define𝐁 = 𝐀(𝐈 − 𝐯1𝐯T
1).

(a) What are the eigenvalues of 𝐁?
(b) Explain how to use the observation in (a) and the power-method to find 𝐯2.
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