
Homework 5 Numerical Analysis Fall 2024

Instructions:

• Due 11/04 at 6:00pm onGradescope.

• Youmust follow the submission policy in the syllabus

Problem 1. Let

𝐀 =
⎡
⎢⎢⎢⎢
⎣

3
2 −1 5

2
−3

2 2 1
2

−3
2 2 −3

2
3
2 −1 9

2

⎤
⎥⎥⎥⎥
⎦

By hand, compute the QR factorization of 𝐀 using the specified algorithm. Show

yourwork at each step.

(a) regular Gram-Schmidt

(b) modified Gram-Schmidt

Problem 2. Suppose𝐔 ∈ ℝ𝑛×𝑗 is an orthogonal matrix and 𝐚 ∈ ℝ𝑛. Recall

proj𝐔⟂(𝐚) = 𝐚 − 𝐔𝐔T𝐚.

For each of the following, compute the number of floating point operations used:

(a) (𝐈 − 𝐔𝐔T)𝐚
(b) 𝐚 − (𝐔𝐔T)𝐚
(c) 𝐚 − 𝐔(𝐔T𝐚)
(d) Gram–Schmidt projection (Algorithm 11.2)

(e) Modified Gram–Schmidt projection (Algorithm 11.3).

Problem 3. Recall the regular Gram–Schmidt projection of 𝐚 onto the orthogonal
compliment of the columns 𝐮1, … , 𝐮𝑗 of 𝐔 is

proj𝐔⟂(𝐚) = 𝐚 − 𝐮1(𝐮T
1𝐚) − … − 𝐮𝑗(𝐮T

𝑗 𝐚).

(a) Implement the projection from (c) in the previous problem.

(b) Compare runtime of the original proj_perp_GS, the modified proj_perp_MGS
and your new implementation.

In particular, let us generate an arbitrary orthogonal matrix𝐔 and vector 𝐚.
n = 2000
k_max = 500
U_full ,_ = np.linalg.qr(np.random.randn(n,k_max))
a = np.random.randn(n)

1

https://www.gradescope.com/courses/818054
https://courses.chen.pw/na_f2024/syllabus.html

ks = [1,50,100,150,200,250,300,350,400,450,500]

for k in ks:
U = U_full[:,:k]

your timing code here for each of the 3 algorithms

For each of the 𝑘 values above, time how long it takes to compute the orthog-
onal projection of 𝐚 onto the first 𝑘 columns of 𝐔. The matrix with the first 𝑘
columns of 𝐔 is U[:,:k].

Plot all the timings on the same plot, labeling each curve and the axes.

Note that because of noise, itwill help to average together several runs for each

value of 𝑘.
Optionally, you can repeat this andmake newplots for different values of 𝑛.

(c) What do you observe? How can you explain this, given that all of the algo-

rithms use rough the same number of floating point operations?

Problem 4. Implement a QR algorithm using your projection method. You can do

this bymodifying a few lines of code in Section 11.4.3.

Add a subfigure to the plot in Section 11.4.4 showing the orthogonality of the output

of QR with your new implementation. How does it compare to the regular Gram–

Schmidt and the Modified Gram–Schmidt? Explain why this is the case theoreti-

cally.

Problem 5. (a) Let 𝑥1, … , 𝑥𝑛 be uniformly space points from −1 to 1. You can gen-
erate this in code by x = np.linspace(-1,1,n).

For 𝑛 = 100, construct thematrix

𝐀 =
⎡
⎢
⎢
⎢
⎣

(𝑥1)0 (𝑥1)1 ⋯ (𝑥1)4

(𝑥2)0 (𝑥2)1 ⋯ (𝑥2)4

⋮ ⋮ ⋮
(𝑥𝑛)0 (𝑥𝑛)1 ⋯ (𝑥𝑛)4

⎤
⎥
⎥
⎥
⎦

(b) Plot each columnof 𝐀 against𝐱 = [𝑥1, … , 𝑥𝑛]ona single plot. Label each curve.
If your matrix 𝐀 is a stored as a python array A, you can plot the 𝑖-th column
using plt.plot(x,A[:,i]).

(c) Apply a QR factorization to 𝐀 to obtain 𝐐𝐑. You are allowed to use numpy’s
algorithm or the ones from the lecture.

On a separate plot from (b), plot each of the columns of 𝐐.

2

(d) Explain howeach column of 𝐐 relates to 𝐱. In particular,write down the poly-
nomials 𝑝0(𝑥), 𝑝1(𝑥), …, 𝑝4(𝑥) such that

𝐐 =
⎡
⎢⎢⎢
⎣

𝑝0(𝑥1) 𝑝1(𝑥1) ⋯ 𝑝4(𝑥1)
𝑝0(𝑥2) 𝑝1(𝑥2) ⋯ 𝑝4(𝑥2)

⋮ ⋮ ⋮
𝑝0(𝑥𝑛) 𝑝1(𝑥𝑛) ⋯ 𝑝4(𝑥𝑛)

⎤
⎥⎥⎥
⎦

.

(e) Change𝑛 from100 to1000. Howdo thepolynomials𝑝0, 𝑝2,…, 𝑝4 seemto relate

in the two cases?

Whatwould the polynomials look like 𝑛 → ∞?

3

