Homework 2 Numerical Analysis Fall 2024

Instructions:

« Due 09/24 at 5:00pm on Gradescope.
+ You must follow the submission policy in the syllabus

Problem 1. Consider the matrix
0 -1
1 0

3 0
0 -1

cosm/3 —sinm/3

A= sinm/3 cosm/3

(a) Find an SVD UZVT of A. Hint: think about why the given factorization is not
an SVD.

(b) Draw what VT does to the following points (here a point is anything shown in
black, and the dotted lines represent the x and y axes.):

~ A~

(c) Drawwhat 2V does to the points.
(d) Draw what UZVT does to the points.

Problem 2. Recall:
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We will prove the identity |AB||r < [|All,[B|g-

(a) Prove that |Ax||, < |A[;[x[ for any vector x.
(b) Suppose X is a nxm matrix. Write |X|[r in terms of the column-norms |[X]. ;{|,.
(c) Use (a)and (b) to prove the identity |AB|r < [A[,[IB]|f.


https://www.gradescope.com/courses/818054
https://courses.chen.pw/na_f2024/syllabus.html

Problem 3. Let A be a m x n matrix with SVD UZV' where X contains the singular
values oy > 0 > -+ > 0,. We will prove that |A[, = o;.

(a) Prove thatif U'U = I then [Uz|, = ||z|, for any vector z.

(b) Prove thatif V'V = I, then V'x = 0if and onlyif x = 0.

(c) Prove that [Al, = [|Z[,.

(d) It remains to show that |Z|, = 0.

(i) Compute ||2x|3 for an arbitrary vector x = [x1, X, ..., x,]".

(ii) Show that [|2x[3 < o?|x/3
(iii) Show that there exists a vector x such that |Zx[, = o [x|)3.
(iv) Conclude that [|Z], = o;.

Problem 4. Download the numpy data file from this link: https://drive.google.
com/file/d/18Xf0029XXm3ENWfe3Z0a--Cf6tjyCViz/view?usp=drive link

Use the following code to import the file into numpy.
import numpy as np

import matplotlib.pyplot as plt

im = np.load('change this path/CIMS.npy')

If you are using google colab, you can copy the CIMS.npy file to your own drive and
then

from google.colab import drive
drive.mount ('/content/gdrive ')

im = np.load('gdrive/MyDrive/change this path/CIMS.npy')

In both cases, forma matrix from the image data.

A = np.mean(im,axis=2)
Here we obtain A by averaging the red, green, and blue channels of the image. This
results in a black and white image.

(a) Plottheimageusingplt.imshow. You maywanttousethe colormap 'Greys_r'
so that it looks like a greyscale image.
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(b)

Compute the reduced SVD of A. You can use full_matrices=False to get the
reduced SVD. This will be much faster than computing the full SVD.

For each k = 1,10,100,200, make a plot of the best rank-k approximation
A, to A (i.e. via truncated SVD). Label each plot with the rank k as well as the
relative error |A — A, ||c/|Allg

Remark on the quality of the plots.

How many numbers are required to store A? How many numbers are required
to store the rank-k truncated SVD (as a factorization)?

Problem 5. Computing the SVD is expensive, but randomization can help us!

(2)

(b)
(c)
(d)

Randomized numerical linear algebra (RandNLA) is the study of the use of
randomness in numerical linear algebra algorithms. One of the most famous
randNLA algorithms is the randomized SVD. A simple version for approximat-
ing the SVD of a m x n matrix A can be described in several lines:

+ Choose a n x k matrix R with standard normal random entries

« Compute X = AR

- ComputeQ, _,_ = REDUCED-SVD(X)

- U,%,V" = REDUCED-sVD(QTA):

- Return approximate SVD of A: (QU)ZVT
Implement this algorithm with the same matrix A as in Problem 3. To generate
the random matrix, you can use np.random.randn(n,k).

Again make sure to use full_matrices=False when computing the SVD of
Q'A. Compare this to long the whole randomized SVD took (all of the steps)
with k = 100 against the time to compute the exact SVD in the previous prob-
lem.

Prove that the factors QU, £ and V' have the same properties as a SVD; i.e. QU
and V have orthonormal columns and ¥ is diagonal with non-negative entires.

Make a plot of the rank k = 100 truncated SVD (from problem 3) and the k =
100 randomized SVD. Show the relative errors | A — (QU)ZVT||¢/| Al for each.

How long did this algorithm take to run vs. the reduced SVD in problem 37?
Why was it so much faster? Hint: what are the dimensions of the matrices
which we take the SVD of using this approach?



