Quiz 2

Numerical Analysis Fall 2023

Name:

NetID:											
--------	--	--	--	--	--	--	--	--	--	--	--

Do not begin until instructed. Clearly justify each step. Circle your final answer.

Problem 1 (7pts). Define

a) What is $\mathbf{M}^{\mathsf{T}}\mathbf{M}$?

b\	What is	$\ \mathbf{M}\mathbf{X}\ _{\Gamma}$?	Hint: \	Use part a	and	properties	of the	Frobenius	norm.

Problem 2 (8pts). Suppose that **A** has an SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ given by

$$\mathbf{U} = \begin{bmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{V}^{\mathsf{T}} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{5}{7\sqrt{3}} & \frac{11}{7\sqrt{3}} \\ \frac{9}{7\sqrt{2}} & -\frac{2\sqrt{2}}{7} & \frac{1}{7\sqrt{2}} \end{bmatrix}.$$

Define

$$\mathbf{x} = \begin{bmatrix} \frac{9}{7\sqrt{2}} \\ -\frac{2\sqrt{2}}{7} \\ \frac{1}{7\sqrt{2}} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \sqrt{\frac{2}{3}} \\ -\frac{1}{\sqrt{6}} \end{bmatrix}.$$

a) What is $\mathbf{A}\mathbf{x}$? Hint: Note that \mathbf{x} is the last column of $\mathbf{V}(\mathbf{x}^{\mathsf{T}})$ is the bottom row of \mathbf{V}^{T}).

b) What is $\|\mathbf{A}\mathbf{y}\|_2$? *Hint*: Note that \mathbf{y} is the first column of $\mathbf{V}(\mathbf{y}^T)$ is the top row of \mathbf{V}^T).