Midterm	Numerical Analysis Fall 2023		
Name:	NetID:		

Do not open the exam booklet until instructed!

Instructions

- You can use one 8.5x11 inch sheet of notes.
- You can use a scientific calculator (≤ 2 line display and no linear algebra functionality).
- Clearly justify each step.
- Write only inside the indicated areas; use scratch paper for scratch work.
- Write your answers in the given blank matrices/vectors areas when appropriate.
- Do not fold the corners of the papers.

Contents

1	definitions	8pts
2	views on matrix products	12pts
3	SVD	20pts
4	conditioning and stability	14pts
5	LU factorization	9pts
5	LU factorization	7pts
7	QR factorization	14pts
8	Projection	10pts
9	Least squares	6pts

Problem 1. a) Complete the following definition:				
A matrix A is said to be <i>lower triangular</i> if:				
b) Let A be a $n \times n$ lower triangular matrix and D a $n \times n$ diagonal matrix. Prove that DA is lower triangular.				

Problem 2. Suppose that \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 are vectors such that:

$$\begin{bmatrix} | & | \\ \mathbf{a}_1 & \mathbf{a}_2 \\ | & | \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & \pi \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} 14/3 \\ 12/5 \\ -2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

Compute the following:

a)
$$\mathbf{x} = \begin{bmatrix} | & | \\ \mathbf{a}_1 & \mathbf{a}_2 \\ | & | \end{bmatrix} \begin{bmatrix} 5 \\ \pi - 1 \end{bmatrix}$$
, b) $\mathbf{y} =$

a)
$$\mathbf{x} = \begin{bmatrix} | & | \\ \mathbf{a}_1 & \mathbf{a}_2 \\ | & | \end{bmatrix} \begin{bmatrix} 5 \\ \pi - 1 \end{bmatrix}$$
, b) $\mathbf{y} = \begin{bmatrix} | & | & | & | & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{a}_1 & \mathbf{a}_2 \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} 14/3 \\ 12/5 \\ -2/3 \\ 4 \\ 2\pi \end{bmatrix}$

a)

Problem 3. a) If $\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}$ is an SVD of an $n \times n$ is	matrix A , what properties must U , Σ , and V have?
,	
Define $\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$	$\sqrt{2}$][-4 0][0 1]
2 , . , ,	
b) Find an SVD of A ; $A = U\Sigma V^{T}$. Note that you	should specify V^T not V .
r ' 7 r	' 1 r ' 1
$\mathbf{U} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \mathbf{\Sigma} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\mathbf{V}^{T} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$
	· · · · · · · · · · · · · · · · · · ·
	; 1 (; 1
c) What is $\max_{\mathbf{x} \in \mathbb{R}^2} \frac{\ \mathbf{A}\mathbf{x}\ _2}{\ \mathbf{x}\ _2}$?	d) What is $\ \mathbf{A}\ _{F}$?

Problem 4. Consider the following problem/task: Given an input of coefficients a and b , output a number x so that $ax + b = 0$.				
a) Give a reasonable mathematical definition for the cond should write an expression involving the specifics of this				
b) Is this task well-conditioned? If so, prove it. If not, find	d an example demonstrating it is not.			
page 5 of 11	NetID:			

Problem 5. Find a factorization A = LU, where L is lower triangular, and U is upper triangular.

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 4 \\ -1 & 5 & 3 \end{bmatrix}.$$

page 6 of 11

NetID:

Problem 6. Suppose we have run Gaussian elimination with partial pivoting on **A** to get:

$$\begin{bmatrix} 1 & . & . \\ . & 1 & . \\ . & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & . & . \\ . & . & 1 \\ . & 1 & . \end{bmatrix} \begin{bmatrix} 1 & . & . \\ 1/2 & 1 & . \\ 1/3 & . & 1 \end{bmatrix} \begin{bmatrix} . & 1 & . \\ 1 & . & . \\ . & . & 1 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{bmatrix}$$

Write down a factorization PA = LU, where P is a permutation matrix, L is lower triangular, and U is upper triangular.

Ü	$\mathbf{A} = \begin{bmatrix} 0 & -1 & 4 \\ 0 & 1 & 1 \\ -3 & 0 & 0 \\ 4 & 0 & 0 \end{bmatrix}.$ $\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}$		
		cc	ontinues on next page

NetID:

Problem 7. Find a factorization A = QR where Q has orthonormal columns and R is upper

triangular.

page 8 of 11

Problem 8. Define

$$\mathbf{x} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{W} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and note that: } \operatorname{proj}_{\mathbf{W}}(\mathbf{x}) = \begin{bmatrix} 3 \\ 4 \\ 1 \\ 1 \end{bmatrix}$$

Now, define

$$\mathbf{y} = \mathbf{x} + 12 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

What is $\text{proj}_{\mathbf{W}^{\perp}}(\mathbf{y})$, the projection of \mathbf{y} onto the orthogonal compliment of \mathbf{W} ?

	[]
$\operatorname{proj}_{W^{\perp}}(y) =$	
	L J

Problem 9. Define

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Find the solution \mathbf{x} to the least squares problem $\min_{\mathbf{x} \in \mathbb{R}^2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$.

		[]
		x = []