## Instructions:

- Due 12/15 at 5:00pm on Gradescope.
- You must follow the submission policy in the syllabus
- This homework is worth 40 points (less than the usual 50 points)
- If this is your lowest homework grade, I will drop it (i.e. this homework is optional)

**Problem 1.** Spend at least two hours working on your project prior to the 20th. Answer the following:

- (a) What is the current status of your project?
- (b) What are the big tasks you have left to do before your project is done?
- (c) What is your plan for completing the project in a timely manner?

**Problem 2.** Suppose **A** has SVD  $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$  where

$$\mathbf{U} = \begin{bmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\ | & | & | \end{bmatrix}, \qquad \mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix}, \qquad \mathbf{V} = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | & | \end{bmatrix}.$$

- (a) Show that  $\mathbf{v}_i$  is an eigenvector of  $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ . What is the corresponding eigenvalue?
- (b) Define the block matrix:

$$\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$$

Show that

$$\mathbf{x} = \begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix}$$

is an eigenvector of **B**. What is the corresponding eigenvalue?

**Problem 3.** Let f(x) = |x| and define  $p_k(x)$  as the degree k polynomial interpolate to f(x) at the k + 1 Chebyshev nodes.

- (a) For k = 10 make one plot with x vs f(x) and x vs  $p_k(x)$  and one plot over x vs  $|f(x) p_k(x)|$  with the vertical axis on a log-scale.
- (b) Repeat this for k = 40
- **Problem 4.** (a) Let  $f(x) = \exp(-x)$  and define  $p_k(x)$  as the degree k polynomial interpolate to f(x) at the k + 1 Chebyshev nodes.

Make a plot of *k* vs

$$\max_{x\in[-1,1]}|f(x)-p_k(x)|$$

for k = 0, 1, 2, ... 20. Put the *y*-axis on a log scale and label the axes/plot/etc.

To approximate

$$\max_{x\in[-1,1]}|f(x)-p_k(x)|$$

you can instead take the maximum over 1000 equally spaced points in [-1, 1] and use this instead.

- (b) Repeat this for  $f(x) = 1/(1 + 16x^2)$  and k = 0, 1, ..., 100.
- (c) Repeat this for  $f(x) = |\sin(5x)|^3 = (\sin(5x)^2)^{3/2}$  and k = 0, 1, ..., 100, but put both axes on log-scales.

Add a line k vs  $k^{-v}$ , where v is the largest value so that the (v - 1)-st derivative of f(x) is continuous.

**Problem 5.** Let  $f(x) = 1/(1 + 16x^2)$ .

For any non-negative integer k, set  $n = k^2 + 1$  and let  $x_1, ..., x_n$  be n equally spaced points from -1 to 1 and let  $q_k(x)$  be the degree k polynomial minimizing

$$\min_{\deg(q)=k}\sum_{i=1}^n (f(x_i)-q(x_i))^2.$$

On a log-y plot, plot the error

$$\max_{x\in[-1,1]}|f(x)-q_k(x)|$$

for k = 0, 1, ..., 100. Add to this plot the error of the Chebyshev interpolant that you computed in 3(b).