Instructions:

- Due 12/1 at 5:00pm on Gradescope.
- You must follow the submission policy in the syllabus
- This homework is worth 40 points (less than the usual 50 points)

Problem 1. Spend at least two hours working on your project prior to the 20th. Answer the following:

- (a) What is the current status of your project?
- (b) What are the big tasks you have left to do before your project is done?
- (c) What is your plan for completing the project in a timely manner?

Problem 2. This problem will illustrate that solving the normal equations is less stable than other approaches.

(a) For each $\kappa = 10^1, 10^2, 10^3 \dots, 10^8$, construct a 500×100 matrix **A** whose condition number is κ . A simple way to do this is to generate **U** and **V** as random orthogonal matrices of size $m \times n$ and $n \times n$ and define Σ as a $n \times n$ diagonal matrix manually.

The following code gets you started, you just need to modify the line for the singular values $s = \ldots$

```
m,n = 500,100
U,_ = np.linalg.qr(np.random.randn(m,n))
V,_ = np.linalg.qr(np.random.randn(n,n))
s = #TODO
```

Let **b** be the all ones vector, and compute the "true" solution to the least squares problem $\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$ by setting $\mathbf{x}_{true} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b}$. This can be done with the following code:

b = np.ones(m)
x_true = V@np.diag(1/s)@U.T@b

Now, compute the least squares solution via:

- numpy's least squares solver np.linalg.lstsq
- a QR based approach with numpy's np.linalg.qr and np.linalg.solve or sp.linalg.solve_triangular
- Solving the normal equations with np.linalg.solve

A = U@np.diag(s)@V.T

For each of these three methods and each value of κ , record the relative error $\|\mathbf{x}_{method} - \mathbf{x}_{true}\|_2 / \|\mathbf{x}_{true}\|_2$, where \mathbf{x}_{method} is the solution obtained by the given method.

- (b) Make a log-log plot with the following five (labeled) curves:
 - $\kappa vs 10^{-16} \kappa$
 - $\kappa vs \ 10^{-16} \kappa^2$
 - κ vs relative error (for each of the three methods above)

Comment on what you observe about the plots. In particular, discuss how each method depends on κ and what the relative errors would be if we did everything in exact arithmetic

Problem 3. Suppose A has eigenvalue decomposition:

$$\mathbf{A} = \mathbf{V} \begin{bmatrix} -4 & & \\ & -1 & \\ & & 2 & \\ & & & 3 \end{bmatrix} \mathbf{V}^{-1}, \qquad \mathbf{V} = \begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & | \end{bmatrix}$$

where the \mathbf{v}_i are all orthonormal.

Suppose we run inverse power method with shift *c* with $\mathbf{x} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4$; that is, power method on $(\mathbf{A} - c\mathbf{I})^{-1}$.

If $c \in (0.5, 2.5)$, then we will converge to \mathbf{v}_3 , the eigenvector corresponding to eigenvalue 2. The rate of converge is

$$\rho = \left| \frac{\lambda_2 ((\mathbf{A} - c\mathbf{I})^{-1})}{\lambda_1 ((\mathbf{A} - c\mathbf{I})^{-1})} \right|,$$

where $\lambda_1((\mathbf{A} - c\mathbf{I})^{-1})$ and $\lambda_2((\mathbf{A} - c\mathbf{I})^{-1})$ are the largest and second largest eigenvalues of $(\mathbf{A} - c\mathbf{I})^{-1}$ in magnitude respectively.

- (a) Plot ρ as a function of *c* for *c* in the range (0.5, 2.5).
- (b) Let \mathbf{y}_k be the output of k-steps of the power method, and assume $\|\mathbf{v}_3 \mathbf{y}_k\|_2 \le \rho^k$. For $\epsilon = 10^{-1}$, make a plot showing how large k has to be so that $\|\mathbf{v}_3 - \mathbf{y}_k\|_2 < \epsilon$ for the values of c in the range (0.5, 2.5). Add more a new line to this plot for each $\epsilon = 10^{-2}$, 10^{-5} , 10^{-10} plot. Label all the lines.

Problem 4. For the same matrix as in Problem 3, suppose we run power method with a starting vector:

$$\mathbf{x} = \mathbf{V} \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}.$$

- (a) Find a vector \mathbf{z} so that $\mathbf{A}^k \mathbf{x} = \mathbf{V} \mathbf{z}$.
- (b) What vector does $\mathbf{z}/\|\mathbf{z}\|$ converge to as $k \to \infty$?
- (c) What vector does $\mathbf{A}^k \mathbf{x} / \|\mathbf{A}^k \mathbf{x}\|$ converge to as $k \to \infty$?
- (d) Why did we get something different than on worksheet 8, where power method converged to a multiple of \mathbf{v}_1 ?