
Homework 2 Numerical Analysis Fall 2023

Instructions:

• Due 09/29 at 5:00pm onGradescope.

• Youmust follow the submission policy in the syllabus

Problem 1. Consider thematrix

𝐀 = [1 0
0 1] [−2 0

0 1] [cos 𝜋/4 − sin 𝜋/4
sin 𝜋/4 cos 𝜋/4 ]

(a) Find a SVD of 𝐀. Hint: think aboutwhy the given factorization is not an SVD.
(b) Drawwhat 𝐀 does to the following points (here a point is anything shown in

black, and the dotted lines represent the x and y axes.):

NYU

Problem 2.

(a) Suppose𝐗 is a 𝑛 × 𝑚matrix. Howdoes ‖𝐗‖F relate to ‖𝐗T‖F?
(b) Suppose𝐗 is a 𝑛×𝑚matrix. Write ‖𝐗‖F in terms of the column-norms ‖[𝐗]∶,𝑖‖2.

(c) Suppose𝐗 is a 𝑛 × 𝑚matrix and𝐔 is a 𝑛 × 𝑛 orthogonalmatrix (𝐔T𝐔 = 𝐈). Show
that ‖𝐔𝐗‖F = ‖𝐗‖F. Hint: use (b) and show that ‖𝐔𝐱‖2 = ‖𝐱‖2 for anyvector 𝐱.

(d) Let 𝐀 be a 𝑛 × 𝑚 matrix with SVD 𝐀 = 𝐔𝚺𝐕T and assume 𝑛 ≥ 𝑚. Prove that
‖𝐀‖F = √𝜎2

1 + ⋯ + 𝜎2
𝑚, where 𝜎𝑖 are the singular values of 𝐀
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Problem 3. Download the numpydata file from this link: https://drive.google.
com/file/d/18Xf0029XXm3ENWfe3Z0a--Cf6tjyCViz/view?usp=drive_link

Use the following code to import the file into numpy.

import numpy as np
import matplotlib.pyplot as plt

im = np.load('change this path/CIMS.npy ')

If you are using google colab, you can copy the CIMS.npy file to your own drive and
then

from google.colab import drive
drive.mount('/content/gdrive ')

im = np.load('gdrive/MyDrive/change this path/CIMS.npy ')

In both cases, formamatrix from the image data.

A = np.mean(im,axis=2)

Herewe obtain𝐀 by averaging the red, green, and blue channels of the image. This

results in a black andwhite image.

(a) Plot the imageusingplt.imshow. Youmaywant touse thecolormap'Greys_r'
so that it looks like a greyscale image.

(b) Compute the reduced SVD of 𝐀. You can use full_matrices=False to get the
reduced SVD. Thiswill bemuch faster than computing the full SVD.

For each 𝑘 = 1, 10, 100, 200, make a plot of the best rank-𝑘 approximation
𝐀𝑘 to 𝐀 (i.e. via truncated SVD). Label each plot with the rank 𝑘 as well as the
relative error ‖𝐀 − 𝐀𝑘‖F/‖𝐀‖F

(c) Remark on the quality of the plots.

Howmanynumbers are required to store𝐀? Howmanynumbers are required
to store the rank-𝑘 truncated SVD (as a factorization)?
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Problem 4. Computing the SVD is expensive, but randomization can help us!

(a) Randomized numerical linear algebra (RandNLA) is the study of the use of

randomness in numerical linear algebra algorithms. One of the most famous

randNLAalgorithms is the randomizedSVD.Asimpleversion forapproximat-

ing the SVD of a𝑚 × 𝑛matrix𝐀 can be described in several lines:

• Choose a 𝑛 × 𝑘matrix𝐑with standard normal random entries

• Compute𝐗 = 𝐀𝐑
• Compute𝐐, _, _ = reduced-svd(𝐗)
• 𝐔̂, 𝚺̂, 𝐕̂T = reduced-svd(𝐐T𝐀):
• Return approximate SVD of 𝐀: (𝐐𝐔̂)𝚺̂𝐕̂T

Implement this algorithmwith the samematrix𝐀 as in Problem3. To generate

the randommatrix, you can use np.random.randn(n,k).

Again make sure to use full_matrices=False when computing the SVD of

𝐐T𝐀. Compare this to long the whole randomized SVD took (all of the steps)
with 𝑘 = 100 against the time to compute the exact SVD in the previous prob-
lem.

(b) Prove that the factors𝐐𝐔̂, 𝚺̂ and 𝐕̂T have the same properties as a SVD; i.e. 𝐐𝐔̂
and 𝐕̂have orthonormal columns and 𝚺̂ is diagonalwith non-negative entires.

(c) Make a plot of the rank 𝑘 = 100 truncated SVD (from problem 3) and the 𝑘 =
100 randomized SVD. Show the relative errors ‖𝐀 − (𝐐𝐔̂)𝚺̂𝐕̂T‖F/‖𝐀‖F for each.

(d) How long did this algorithm take to run vs. the reduced SVD in problem 3?

Why was it so much faster? Hint: what are the dimensions of the matrices

whichwe take the SVD of using this approach?
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