Quiz 1

\square

Do not begin until instructed. Clearly justify each step.
Problem 1. Recall that we defined the complex numbers as the set

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\} .
$$

along with the operations of addition and multiplication defined by

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i, \quad(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i .
$$

Show that $\alpha \cdot \beta=\beta \cdot \alpha$ for any $\alpha, \beta \in \mathbb{C}$.

Problem 2. Recall that a non-empty subset X of a vector space V is a subspace if it is closed under addition and scalar multiplication.

Show that the set of all continuous real-valued functions f on the interval $[0,1]$ such that $f^{\prime}(0)=$ b is a subspace of the vector space of all continuous real-valued functions on $[0,1]$ if and only if $b=0$.

