
Homework 5 Linear Algebra I

Instructions:
• Due April 9 at 11:59pm on Gradescope.
• You must follow the submission policy in the syllabus

Problem 1 (Product and quotient space).
(a) For a positive integer m, show that V m = V × V × · · · × V︸ ︷︷ ︸

mtimes

is isomorphic to

L(Fm, V ). Do not assume V is finite-dimensional.
(b) Suppose A1 = v + U1 and A2 = w + U2 for some v, w ∈ V and some subspaces

U1, U2 of V . Prove that the intersection A1 ∩ A2 is either a translate of some
subspace of V or is the empty set.

(c) An equivalence relation is a binary relation that is reflexive, symmetric and
transitive. Fix a subspace U of V . Show that v ∼ w if and only if v − w ∈ U
is an equivalence relation on V .

(d) Briefly explain how the previous problem relates to translates.
(e) Suppose U is a subspace of a finite dimensional vector space V . Prove that V is

isomorphic to U × (V/U). (For a harder problem, you can replace the assump-
tion V is finite dimensional with the assumption V/U is finite-dimensional)

Problem 2 (Duality).
(a) Explain why each linear functional is surjective or is the zero map.
(b) Show that the dual map of the identity operator on V is the identity operator

on V ′.
(c) Suppose m ≥ 0. What is the dual basis of {1, x− 5, (x− 5)2, . . . , (x− 5)m} in

Pm?
(d) Suppose T ∈ L(V,W ) and w1, . . . , wm is a basis of range T . Hence for each

v ∈ V , there exist unique numbers ϕ1(v), . . . , ϕm(v) such that

Tv = ϕ1(v)w1 + · · ·+ ϕm(v)wm,

thus defining functions ϕ1, . . . , ϕm from V to F. Show that each of the functions
ϕ1, . . . , ϕm is a linear functional on V .
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Problem 3.

(a) Suppose v1, . . . , vn and v1, . . . , un are such that span{v1, . . . , vk} = span{u1, . . . , uk}
for each k. Show that there exists an upper triangular matrix R such that | | |

v1 v2 · · · vn
| | |

 =

 | | |
u1 u2 · · · un

| | |

R.

(b) Suppose we have a independent set of vectors v1, . . . , vn and apply Gram-
Schmidt to obtain an orthonormal set u1, . . . , un such that

Set u1 = v1/‖v1‖.
For k = 2, . . . , n, set:

ûk = vk − 〈vk, u1〉u1 − · · · − 〈vk, uk−1〉uk−1.

and
uk = ûk/‖ûk‖.

(c) Show that the upper triangular matrix R you described in part (a) can be
obtained from the coefficients computed by the Gram–Schmidt algorithm. That
is, that you get the matrix R “for free” from the Gram–Schmidt algorithm.

Problem 4. Consider the vector space P4 of polynomials of degree at most 4. Define
an inner product on P4 by

〈p, q〉 =
∫ 1

−1

p(x)q(x)
1√

1− x2
dx, ∀p, q ∈ P4.

(a) Verify this is an inner product.
(b) Apply the Gram-Schmidt process to the basis {1, x, x2, x3, x4} to obtain an

orthonormal basis. You can use Wolfram alpha or similar to compute integrals,
but should write down the integrals you are computing.

(c) Make a plot of the polynomials you computed and a different plot of the Cheby-
shev polynomials (up to degree 4). How do they compare?

2

https://en.wikipedia.org/wiki/Triangular_matrix


Problem 5. (a) Suppose V is a real inner product space and v1, . . . , vm is a linearly
independent list of vectors in V . Prove that there exist exactly 2m orthonormal
lists e1, . . . , em of vectors in V such that

span (v1, . . . , vk) = span (e1, . . . , ek)

for all k ∈ {1, . . . ,m}.
(b) Suppose C[−1, 1] is the vector space of continuous real-valued functions on the

interval [−1, 1] with inner product given by

〈f, g〉 =
∫ 1

−1

fg

for all f, g ∈ C[−1, 1]. Let ϕ be the linear functional on C[−1, 1] defined by
ϕ(f) = f(0). Show that there does not exist g ∈ C[−1, 1] such that

ϕ(f) = 〈f, g〉

for every f ∈ C[−1, 1].
(c) Suppose V is finite-dimensional. Suppose 〈·, ·〉1, 〈·, ·〉2 are inner products on V

with corresponding norms ‖ · ‖1 and ‖ · ‖2. Prove that there exists a positive
number c such that ‖v‖1 ≤ c‖v‖2 for every v ∈ V .
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