Homework 3

Instructions:

- Due March 4 at 11:59pm on Gradescope
- You must follow the submission policy in the syllabus

Problem 1 (Isomorphism).
(a) Let $V=\mathbb{R}^{n}$ and $W=\mathcal{P}_{n-1}(\mathbb{R})$ (the set of polynomials of degree at most $n-1$). Write down an isomorphism ϕ from V to W (you must define $\phi(\vec{v}$) for each $\vec{v} \in V$), and prove it is an isomorphism.
(b) Suppose $\phi: U \rightarrow V$ is an isomorphism. Let $\phi^{-1}: V \rightarrow U$ be the inverse of ϕ (i.e. $\phi^{-1}(\phi(\vec{u}))=\vec{u}$ for all $\left.u \in U\right)$. Prove that ϕ^{-1} is an isomorphism from V to U.
(c) Let $U=\mathbb{R}^{3}$ and $V=\mathbb{R}^{4}$. Prove that U and V are not isomorphic. (Hint: suppose ϕ is an isomorphism from U to V, and derive a contradiction.)

Problem 2 (Linear Maps).
(a) Suppose $b, c \in \mathbf{R}$. Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by

$$
T(x, y, z)=(2 x-4 y+3 z+b, 6 x+c x y z) .
$$

Show that T is linear if and only if $b=c=0$.
(b) Suppose $b, c \in \mathbf{R}$. Define $T: \mathcal{P}(\mathbf{R}) \rightarrow \mathbf{R}^{2}$ by

$$
T p=\left(3 p(4)+5 p^{\prime}(6)+b p(1) p(2), \int_{-1}^{2} x^{3} p(x) d x+c \sin p(0)\right) .
$$

Show that T is linear if and only if $b=c=0$.
(c) Suppose $\vec{v}_{1}, \ldots, \vec{v}_{n}$ spans V. Prove that $T \vec{v}_{1}, \ldots, T \vec{v}_{n}$ spans range (T).

Problem 3 (FTLM Proof). We will prove the FTLM in a slightly different way (so you can't use any consequences of the FTLM in this problem). While this is a bit more tedious at the moment, once things like (a) and (b) become second nature, I think this proof is more insightful.

Suppose V is finite dimensional and $T \in \mathcal{L}(V, W)$. Let $\vec{u}_{1}, \ldots, \vec{u}_{m}$ be a basis for $\operatorname{null}(T)$ and extend to a basis $\vec{u}_{1}, \ldots, \vec{u}_{m}, \vec{v}_{1}, \ldots, \vec{v}_{n}$ for V. Define a subspace $X=$ $\operatorname{span}\left(v_{1}, \ldots, \vec{v}_{n}\right)$ of V.
(a) Define T_{V} as the restriction of T to X; i.e. $\left(T_{V}(\vec{x})\right)=T(\vec{x})$ for all $\vec{x} \in X$. Prove that $T_{V} \in \mathcal{L}(X, W)$.
(b) What is $\operatorname{null}\left(T_{V}\right)$?
(c) What is range $\left(T_{V}\right)$?
(d) Prove that T_{V} is an isomorphism from X to range (T); i.e. that it is injective and surjective.
(e) Conclude that $\operatorname{dim}(\operatorname{range}(T))=n$, and hence the FTLM.

Problem 4 (FTLM).
(a) Give an example of a linear map with $\operatorname{dim}(\operatorname{null}(T))=2$ and $\operatorname{dim}(\operatorname{range}(T))=2$.
(b) Suppose U and V are finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$
\operatorname{dim} \operatorname{null}(S T) \leq \operatorname{dim} \operatorname{null}(S)+\operatorname{dim} \operatorname{null}(T)
$$

(c) Suppose U and V are finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$
\text { dim range } S T \leq \min \{\operatorname{dim} \text { range } S \text {, dim range } T\}
$$

(d) Prove there does not exist $T \in \mathcal{L}\left(\mathbb{R}^{5}\right)$ such that range $(T)=\operatorname{null}(T)$.
(e) Find an example of $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ such that range $(T)=\operatorname{null}(T)$.
(f) For the operator from the previous problem, what is range $\left(T^{2}\right)$ and null $\left(T^{2}\right)$? (Here T^{2} is notation for $T T$.)

