Instructions:

- Due Feb 19 at 11:59pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1 (Span).
(a) Let $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$. Prove $\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ is a subspace of V.
(b) Show that $\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ is the smallest subspace of V containing $\vec{v}_{1}, \ldots, \vec{v}_{k}$.
(c) Find a list of four distinct vectors in \mathbb{R}^{3} whose span equals

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\} .
$$

(d) Prove or give a counterexample: If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ is a linearly independent list of vectors in V and $\lambda \in \mathbf{F}$ with $\lambda \neq 0$, then $\lambda \vec{v}_{1}, \lambda \vec{v}_{2}, \ldots, \lambda \vec{v}_{m}$ is linearly independent.

Problem 2 (Independence).
(a) Let $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$. Prove that if $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly dependent if and only if there exists $i \in\{1, \ldots, k\}$ such that $\vec{v}_{i} \in \operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}\right)$.
(b) Show that if the set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent, then none of the \vec{v}_{i} are the zero vector.
(c) Prove or give a counterexample: If $\vec{v}_{1}, \ldots, \vec{v}_{m}$ and $\vec{w}_{1}, \ldots, \vec{w}_{m}$ are linearly independent lists of vectors in V, then the list $\vec{v}_{1}+\vec{w}_{1}, \ldots, \vec{v}_{m}+\vec{w}_{m}$ is linearly independent.

Problem 3 (Basis).
(a) Show that a linear space spanned by a finite set of vectors has a basis. (This is Lemma 2 in Lax, but the proof is a bit too terse, so you should fill in the details. In particular, he writes "So we can drop that x_{i} " but does not explain what should happen after we drop x_{i}, and he writes that we can repeat this until they are linearly independent but does not justify why it will eventually become independent.)
(b) Show every vector space spanned by a finite set of vectors has a basis.
(c) Suppose $\vec{v}_{1}, \ldots, \vec{v}_{4}$ is a basis of V. Prove that

$$
v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}
$$

is also a basis of V.
(d) Prove or give a counterexample: If $\vec{v}_{1}, \ldots, \vec{v}_{4}$ is a basis of V and U is a subspace of V such that $\vec{v}_{1}, \vec{v}_{2} \in U$ and $\vec{v}_{3} \notin U$ and $\vec{v}_{4} \notin U$, then \vec{v}_{1}, \vec{v}_{2} is a basis of U.
(e) Recall $\Phi_{m}(\mathbb{R})$ is the space of polynomials with real coefficients and degree at most m . Show that if $p_{0}, \ldots, p_{m} \in \Phi_{m}(\mathbb{R})$ are such that $\operatorname{deg}\left(p_{i}\right)=i$, then p_{0}, \ldots, p_{m} is a basis for $P_{m}(\mathbb{R})$.

Problem 4 (Dimesion).

(a) Prove that if $X=Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{m}$, then $\operatorname{dim}(X)=\operatorname{dim}\left(Y_{1}\right)+\operatorname{dim}\left(Y_{2}\right)+\cdots+$ $\operatorname{dim}\left(Y_{m}\right)$.
(b) Recall $\Phi_{4}(\mathbb{R})$ is the space of polynomials with real coefficients and degree at most 4. Let $U=\left\{p \in \Phi_{4}(\mathbb{R}): \int_{-1}^{1} p=0\right\}$.

- Find a basis of U
- Extend the previous basis to a basis for $\Phi_{4}(\mathbb{R})$.
- Find a subspace W of $\Phi_{4}(\mathbb{R})$ such that $\Phi_{4}(\mathbb{R})=U \oplus W$.
(c) Suppose U and V are both 3 dimensional subspaces of \mathbb{R}^{5}. Prove that $U \cap V \neq$ $\{0\}$.

